bigfanofloT 发表于 2017-12-2 12:39:09

【一起来玩RTOS系列】之RT-Thread 信号量用于资源计数

本帖最后由 bigfanofloT 于 2017-12-2 12:42 编辑


资源计数适合于线程间速度不匹配的场合,这个时候信号量可以做为前一线程工作完成的计数,而当调度到后一线程时,它可以以一种连续的方式一次处理数个事件。例如,生产者与消费者问题中,生产者可以对信号进行多次释放,而后消费者被调度到时能够一次处理多个资源。
注: 一般资源计数类型多是混合方式的线程间同步,因为对于单个的资源处理依然存在线程的多重访问,这就需要对一个单独的资源进行访问、处理,并进行锁方式的互斥操作。

生产者消费者问题(英语:Producer-consumer problem),也称有限缓冲问题(英语:Bounded-buffer problem),是一个多线程同步问题的经典案例。该问题描述了两个共享固定大小缓冲区的线程——即所谓的“生产者”和“消费者”——在实际运行时会发生的问题。生产者的主要作用是生成一定量的数据放到缓冲区中,然后重复此过程。与此同时,消费者也在缓冲区消耗这些数据。该问题的关键就是要保证生产者不会在缓冲区满时加入数据,消费者也不会在缓冲区中空时消耗数据。
解决办法
要解决该问题,就必须让生产者在缓冲区满时休眠(要么干脆就放弃数据),等到下次消费者消耗缓冲区中的数据的时候,生产者才能被唤醒,开始往缓冲区添加数据。同样,也可以让消费者在缓冲区空时进入休眠,等到生产者往缓冲区添加数据之后,再唤醒消费者。通常采用进程间通信的方法解决该问题,常用的方法有信号灯法等。如果解决方法不够完善,则容易出现死锁的情况。出现死锁时,两个线程都会陷入休眠,等待对方唤醒自己。该问题也能被推广到多个生产者和消费者的情形。

接下来在机智云Gokit开发板上演示如何创建并使用信号量作为锁来进行资源的互斥访问,程序中semaphore是作为一种锁的形式存在,当要访问临界资源时,通过持有semaphore 的形式阻止其他线程进入。生产者线程负责生产产品,生产的产品放入缓冲区,当缓冲区满了时,生产者暂停生产,等待消费者消费缓冲区中的产品再重新启动。生产者生产产品前,需要确保缓冲区不满。消费者线程负责消费缓冲区中的产品,当缓冲区为空时,消费者暂停消费,等生产者向缓冲区中放入新的产品后再重新启动。消费者消费产品之前,需要确保缓冲区不为空。

/**
***********************************
* File Name          : main.c
* Description      : Main program body
***********************************
** This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* COPYRIGHT(c) 2017 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*   1. Redistributions of source code must retain the above copyright notice,
*      this list of conditions and the following disclaimer.
*   2. Redistributions in binary form must reproduce the above copyright notice,
*      this list of conditions and the following disclaimer in the documentation
*      and/or other materials provided with the distribution.
*   3. Neither the name of STMicroelectronics nor the names of its contributors
*      may be used to endorse or promote products derived from this software
*      without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
***********************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f1xx_hal.h"
#include "usart.h"
#include "gpio.h"

/* USER CODE BEGIN Includes */
#include "rtthread.h"
#include "string.h"
/* USER CODE END Includes */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);

/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/

/* USER CODE END PFP */

/* USER CODE BEGIN 0 */
//重映射串口1到rt_kprintf
void rt_hw_console_output(const char *str)
{
    /* empty console output */
      char aa='\r';
          rt_enter_critical();

                while(*str!='\0')
                {
                        if(*str=='\n')
                        {
                              HAL_UART_Transmit(&huart1, (uint8_t *)&aa, 1, 10);
                        }
                              HAL_UART_Transmit(&huart1, (uint8_t *)(str++), 1, 10);
                }
               
                rt_exit_critical();
}

void rt_hw_us_delay(int us)
{
    rt_uint32_t delta;

    /* 获得延时经过的tick数 */
    us = us * (SysTick->LOAD/(1000000/RT_TICK_PER_SECOND));

    /* 获得当前时间 */
    delta = SysTick->VAL;

    /* 循环获得当前时间,直到达到指定的时间后退出循环 */
    while (delta - SysTick->VAL< us);
}

void rt_hw_ms_delay(int ms)
{
      int i=0,j=0;
      for(j=0;j<ms;j++)
      {
                for (i=0;i<2;i++)
                rt_hw_us_delay(500);
      }
}

/*
* 程序清单:生产者消费者例子
*
* 这个例子中将创建两个线程用于实现生产者消费者问题
*/
#include <rtthread.h>

/* 定义最大5个元素能够被产生 */
#define MAXSEM   5

/* 用于放置生产的整数数组 */
rt_uint32_t array;
/* 指向生产者、消费者在array数组中的读写位置 */
static rt_uint32_t set, get;

/* 指向线程控制块的指针 */
static rt_thread_t producer_tid = RT_NULL;
static rt_thread_t consumer_tid = RT_NULL;

struct rt_semaphore sem_lock;
struct rt_semaphore sem_empty, sem_full;

/* 生产者线程入口 */
void producer_thread_entry(void* parameter)
{
    rt_int32_t cnt = 0;

    /* 运行100次 */
    while( cnt < 100)
    {
      /* 获取一个空位 */
      rt_sem_take(&sem_empty, RT_WAITING_FOREVER);

      /* 修改array内容,上锁 */
      rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
      array = cnt + 1;
      rt_kprintf("the producer generates a number: %d\n",
            array);
      set++;
      rt_sem_release(&sem_lock);

      /* 发布一个满位 */
      rt_sem_release(&sem_full);
      cnt++;

      /* 暂停一段时间 */
      rt_thread_delay(50);
    }

    rt_kprintf("the producer exit!\n");
}

/* 消费者线程入口 */
void consumer0_thread_entry(void* parameter)
{
    rt_uint32_t no;
    rt_uint32_t sum = 0;

    /* 第0个线程 */
    no = 0;

    while(1)
    {
      /* 获取一个满位 */
      rt_sem_take(&sem_full, RT_WAITING_FOREVER);

      /* 临界区,上锁进行操作 */
      rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
      sum += array;
      rt_kprintf("the consumer[%d] get a number:%d\n", no, array);
      get++;
      rt_sem_release(&sem_lock);

      /* 释放一个空位 */
      rt_sem_release(&sem_empty);

      /* 生产者生产到100个数目,停止,消费者线程相应停止 */
      if (get == 100) break;

      /* 暂停一小会时间 */
      rt_thread_delay(10);
    }

    rt_kprintf("the consumer[%d] sum is %d \n ", no, sum);
    rt_kprintf("the consumer[%d] exit!\n",no);
}
/* 消费者线程入口 */
void consumer1_thread_entry(void* parameter)
{
    rt_uint32_t no;
    rt_uint32_t sum = 0;

    /* 第1个线程 */
    no = 1;

    while(1)
    {
      /* 获取一个满位 */
      rt_sem_take(&sem_full, RT_WAITING_FOREVER);

      /* 临界区,上锁进行操作 */
      rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
      sum += array;
      rt_kprintf("the consumer[%d] get a number:%d\n", no, array);
      get++;
      rt_sem_release(&sem_lock);

      /* 释放一个空位 */
      rt_sem_release(&sem_empty);

      /* 生产者生产到100个数目,停止,消费者线程相应停止 */
      if (get == 100) break;

      /* 暂停一小会时间 */
      rt_thread_delay(10);
    }

    rt_kprintf("the consumer[%d] sum is %d \n ", no, sum);
    rt_kprintf("the consumer[%d] exit!\n",no);
}
/* 消费者线程入口 */
void consumer2_thread_entry(void* parameter)
{
    rt_uint32_t no;
    rt_uint32_t sum = 0;

    /* 第2个线程 */
    no = 2;

    while(1)
    {
      /* 获取一个满位 */
      rt_sem_take(&sem_full, RT_WAITING_FOREVER);

      /* 临界区,上锁进行操作 */
      rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
      sum += array;
      rt_kprintf("the consumer[%d] get a number:%d\n", no, array);
      get++;
      rt_sem_release(&sem_lock);

      /* 释放一个空位 */
      rt_sem_release(&sem_empty);

      /* 生产者生产到100个数目,停止,消费者线程相应停止 */
      if (get == 100) break;

      /* 暂停一小会时间 */
      rt_thread_delay(10);
    }

    rt_kprintf("the consumer[%d] sum is %d \n ", no, sum);
    rt_kprintf("the consumer[%d] exit!\n",no);
}
int semaphore_producer_consumer_init()
{
    /* 初始化3个信号量 */
    rt_sem_init(&sem_lock , "lock",   1,    RT_IPC_FLAG_FIFO);
    rt_sem_init(&sem_empty,"empty", MAXSEM, RT_IPC_FLAG_FIFO);
    rt_sem_init(&sem_full , "full",   0,   RT_IPC_FLAG_FIFO);

    /* 创建线程1 */
    producer_tid = rt_thread_create("producer",
      producer_thread_entry, /* 线程入口是producer_thread_entry */
      RT_NULL, /* 入口参数是RT_NULL */
      512, 1, 20);
    if (producer_tid != RT_NULL)
      rt_thread_startup(producer_tid);
               
    /* 创建线程2 */
    consumer_tid = rt_thread_create("consumer0",
       consumer0_thread_entry,/* 线程入口是consumer_thread_entry */
      RT_NULL, /* 入口参数是RT_NULL */
      512, 3, 20);
    if (consumer_tid != RT_NULL)
      rt_thread_startup(consumer_tid);
               
                  /* 创建线程3 */
    consumer_tid = rt_thread_create("consumer1",
       consumer1_thread_entry,/* 线程入口是consumer_thread_entry */
      RT_NULL, /* 入口参数是RT_NULL */
      512, 3, 20);
    if (consumer_tid != RT_NULL)
      rt_thread_startup(consumer_tid);
               
                                    /* 创建线程4 */
    consumer_tid = rt_thread_create("consumer1",
       consumer2_thread_entry,/* 线程入口是consumer_thread_entry */
      RT_NULL, /* 入口参数是RT_NULL */
      512, 3, 20);
    if (consumer_tid != RT_NULL)
      rt_thread_startup(consumer_tid);

    return 0;
}


/* USER CODE END 0 */

int main(void)
{

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* MCU Configuration----------------------------------------------------------*/

///* Reset of all peripherals, Initializes the Flash interface and the Systick. */
//HAL_Init();

///* USER CODE BEGIN Init */

///* USER CODE END Init */

///* Configure the system clock */
//SystemClock_Config();

///* USER CODE BEGIN SysInit */

///* USER CODE END SysInit */

///* Initialize all configured peripherals */
//MX_GPIO_Init();
//MX_USART1_UART_Init();

/* USER CODE BEGIN 2 */
      
semaphore_producer_consumer_init();
      
      
      printf("\r\n机智云只为智能硬件而生\r\n");
      printf("Gizwits Smart Cloud for Smart Products\r\n");
      printf("链接|增值|开放|中立|安全|自有|自由|生态\r\n");
      printf("www.gizwits.com\r\n");
      printf("\r\nGokit RT-Thread Demo\r\n\r\n");
      
      return 0;
      
      


/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
//while (1)
//{
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
//               
//}
/* USER CODE END 3 */

}

/** System Clock Configuration
*/
void SystemClock_Config(void)
{

RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;

    /**Initializes the CPU, AHB and APB busses clocks
    */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
    _Error_Handler(__FILE__, __LINE__);
}

    /**Initializes the CPU, AHB and APB busses clocks
    */
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
    _Error_Handler(__FILE__, __LINE__);
}

    /**Configure the Systick interrupt time
    */
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);

    /**Configure the Systick
    */
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
* @briefThis function is executed in case of error occurrence.
* @paramNone
* @retval None
*/
void _Error_Handler(char * file, int line)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
while(1)
{
}
/* USER CODE END Error_Handler_Debug */
}

#ifdef USE_FULL_ASSERT

/**
   * @brief Reports the name of the source file and the source line number
   * where the assert_param error has occurred.
   * @param file: pointer to the source file name
   * @param line: assert_param error line source number
   * @retval None
   */
void assert_failed(uint8_t* file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
    ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */

}

#endif

/**
* @}
*/

/**
* @}
*/

/*********** (C) COPYRIGHT STMicroelectronics ***END OF FILE**/

串口打印信息如下:


源码下载:


页: [1]
查看完整版本: 【一起来玩RTOS系列】之RT-Thread 信号量用于资源计数