收藏官网首页
查看: 46587|回复: 1

[新闻] 传感器将在智能时代发挥作用

99

主题

103

帖子

930

积分

高级会员

Rank: 4

积分
930
跳转到指定楼层
楼主
发表于 2017-6-22 16:14:32 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
注册成为机智云开发者,手机加虚拟设备快速开发
传感器将在智能时代发挥作用

  导读:自全球逐步步入智能时代,利用信息传递的过程,传感器就是获取自然和生产领域中发挥着巨大上的作用。传感器是作为信息传递的主要途径和手段。目前,传感器技术在发展经济、推动社会进步方面起到重要的推动作用。世界各国都十分重视这一领域的发展。相信未来,传感器技术将会出现一个飞跃。

  在这个信息速度堪比光速的时代,智能产品日益增多,苹果iPhone系列足以让我们了解到这其中的微妙,智能产品市场前景乐观也足以表明时代进步的步伐之快。然而,众多科技的日益发达,不得不说到物联网和传感器。物联网就是整个的智能网络,传感器则是一个重要的组成部分。

  传感器技术的进步不仅仅可以提高智能时代的质量水平,更会有力的促进经济的发展。传感器早已渗透到生活的各个领域。诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,差不多每一个现代化项目,都离不开各式各样的传感器。

  目前现阶段只是处于智能技术的初期阶段,传感器就发挥着不可替代的作用。如果将物联网比喻成一个人,那么传感器就可以毫无疑问的是神经末梢,是全面感知外界的最核心元件。传感器就是将外界的各种信息转换为可测量可计算的电信号,经过设置的程序输出结果,发送指令使各种事物可以不由人控制而只是由外界条件的变化自觉地调整行为。

  据悉,早在美国移动计算机网络国际会议中就曾提出这样一个观点:“传感网是下一个世纪人类面临的有一个发展机遇。”由此可见,物联网传感器在这个智能时代中发挥着无法取代的重要作用。基于我国与欧美等发达国家存在着一定的差距,研究技术的薄弱,我国传感器技术暂时不能完全满足国内的需求。但传感器技术发展的不发已不能阻挡,电子信息行业也在不断的推进其发展。面对机遇,我国高科技产业应顺应发展潮流,在传感器发展的巨浪中占得先机,改变一直落后于国外的现状。


基于光学传感器的智能玩具小车设计

  智能机器人在当今社会的应用越来越广泛。从普通的玩具机器人到工业控制机器人,从能够炒菜的机器人到可以进行太空探测的机器人,可以预见今后智能机器人的应用将更加广泛。

  普通的无线遥控车大家都很熟悉,任天堂的电玩WII大家也都觉得很神奇。熟悉的不好玩,神奇的又玩不起,可能是很多人遇到的共同问题。本设计从全新的思维角度出发,制作一个日常生活可以玩的智能小车,以飨有共同爱好的读者。

  系统总体设计

  智能小车系统原理是,将三维坐标传感器安装在小车上,小车即具有智能感知功能,就会随着目标物的前后左右移动而跟着移动。系统主要有3个组件:一为三维坐标光感传感器(ETOMS-ET21X111),用于采集目标物的移动坐标,该传感器使用非常简单;二为MCU(EMC-EM78P156),读取传感器数据控制马达转动,EM78P156是市面上常见的MCU,使用简单,价格便宜;三是马达,马达选用普通直流马达即可,采用PWM控制。系统整体框架如图1所示。


  图1 系统整体框架

  该设计的整体功能简单概括起来就是:让小车能够跟着人(或是目标物)走。分开来讲需要实现以下3个小功能:传感器能够正确读取X、Y、Z的坐标值,这是首要条件。MCU能够正确判断X、Z坐标值的大小变化,这是关键。可能有人会有疑问,为什么不判断Y坐标变化呢?那是因为小车不能上下跳跃(上下方为Y轴)。MCU根据坐标值的大小变化控制马达转向及马达PWM的时间,这是结果。

  硬件系统设计

  1 传感器周边电路设计

  ETOMS-ET21X111是一款高性能具有X、Y、Z坐标资料输出功能的光感传感器。具有如下特点:高速资料输出,每秒钟输出坐标资料高达75frame;低电压工作,电压范围2.7~3.5V;采用标准RS232串行资料输出格式输出坐标值;使用外部晶振,范围0.5~12MHz,通常采用3.58MHz;具有可控制曝光接口EO4~EO7。

  EO4~EO7这四个接口是用于曝光控制的,既可以用软件进行控制,也可以用硬件的方式进行控制。根据自己的需要选择合适的即可。本设计采用硬件的方式将这四个接口全部置为高电平。

  传感器周边详细的接口电路如图2所示,从图2中可知EO4~EO7为高,这是曝光设置为硬件拉高,也可以在软件中设置。IC正常工作时,坐标数据由RS232端口输出。注意图2中的4个LED为红外LED。IC工作电压是3.3V,系统采用5V供电。IC采用3.58MHz外接晶振,上电自动复位后即可正常工作。



  图2 传感器接口电路

  2 MCU接口电路设计

  MCU周边控制电路详细设计如图3所示。图3中L、L+控制左边路马达PWM,R、R+控制右路马达PWM。RS232接收传感器坐标数据输入。IC工作于3.3V电压,上电后自动复位。系统时钟采用4MHz外接晶振。


  图3 MCU接口电路

  3 左路马达控制电路

  左路马达控制电路如图4所示。右路马达控制电路同左路的一样,图中Q3、Q4采用PNP管,L和L+不可同时为LOW,以免造成短路。


  图4 左路马达控制电路


  软件系统设计

  系统上电后,首先进行初始化,对EMC78P156的寄存器进行设置,使能中断标志寄存器,等待中断。图5是主程序流程图。


  图5 主程序流程图

  中断产生时进入中断处理子程序,首先要关闭中断标志且保护好现场,然后读取并解析XYZ坐标值,分成以下几种情况。

  (1)判断X轴变化,如果X值在大于14小于等于17时,马达不左右转动,然后再判断Z轴坐标值的变化,如果Z值也在大于14小于等于17时,马达不前后转动。

  (2)如果X轴坐标值大于17,判断Z轴坐标,若Z值大于17,则反转右马达,之后左右马达后转;若Z值小于14,则正转左马达,之后左右马达前转;否则马达不转动。

  (3)如果X轴坐标值小于14,判断Z轴坐标,若Z值大于17,则反转左马达,之后左右马达后转;若Z值小于14,则正转右马达,之后左右马达前转;否则马达不转动。

  中断处理子程序的流程如图6所示。


  图6 中断处理子程序流程

  设计技巧

  1 传感器的设计技巧

  ET21X111对红外线的光谱响应最好,但自然光中含有大量的红外线,所以强烈的自然光会影响传感器的数据,导致输出的坐标与实际坐标有较大的偏差,解决方法是加滤光片,但这也只能起到衰减作用,具体应用视情况而定。

  2 马达控制电路设计技巧

  设计控制马达正反转的电路时要注意:因MCU在上电的时候,I/O的状态是不确定的,所以程序在一开始就要将Q3、Q4的两个I/O设成HI(Q3、Q4为PNP管,如果为NPN管则I/O设成LOW),以防止在上电的时候两个I/O都为LOW,使Q3、Q4导通形成短路。另外需要注意的是在同一时间Q3、Q4只能有一个是导通的。

  3 MCU设计技巧

  在电刷直流马达启动或转动的时候,会产生很大的电源毛刺。这对MCU的工作非常不利,所以加入此LCπ型滤波电路,如图7所示。


  图7 滤波电路

  4 程序设计技巧

  智能小车在运行的过程中,需要一边读取传感器传过来的坐标数据,一边控制马达的PWM输出。传感器会每12ms输出一次坐标资料,所以最好的方式是采用中断来读传感器资料,而在没有资料输出的时间做PWM输出的动作。


智能轮椅的多传感器环境感知系统应用

  0 引言

  智能轮椅的任务是安全、便捷地把用户送到目的地,完成既定任务。在运动过程中,轮椅既需要接受用户的指令,又需结合环境信息启动自身避障、导航等功能模块,与移动机器人不同的是,在使用过程中,轮椅与用户成为一个协同工作的系统。这就要求在设计之初就把人这个因素纳入考虑之中,所以,安全、舒适和容易操作应成为智能轮椅设计中最重要的因素;使用者身体能力的差异决定了智能轮椅需被设计为一个功能多元化,能满足多种层次需要的电子系统,而模块化最能体现系统多功能化的特征,每个用户都能根据其自身残障类型和程度选择适当的模块集成,且设计者可以在现有基础上通过增添功能模块,很方便地对轮椅功能进行改进。本文着重就智能轮椅模块化设计进行了阐述。

  1 传感器系统总体结构设计

  智能轮椅的总功能可以分为以下几个子功能:传感器环境感知及导航功能、控制功能、驱动功能和人机交互功能。通过对智能轮椅的功能分析和模块划分,再结合具体的研究内容和期望控制目标,本系统主要由传感器模块、驱动控制模块和人机交互模块3部分组成,硬件系统结构如图1所示。其中传感器模块主要有内部状态感知和外部环境感知两部分构成,通过姿态传感器确定轮椅自身的位姿信息;通过编码器的位移速度和距离获得自定位信息;视觉、超声波和接近开关主要负责持续获得周围环境和障碍物的距离信息。驱动控制模块我们采用后轮驱动的方式,每一个后轮配置一个电动机,在控制器的操作下实现电动轮椅的前进、后退和转向。人机交互界面由操作杆和个人电脑界面数据输入两种方式,实现基本的人机交互功能。


  其中,数据采集单元拟选择DSP TMS320LF2407A作为传感器模块的控制芯片。TMS320LF2407A是一款高性能的数字信号处理器,它具有较高的频率,丰富的**接口。它的主频可达150MHz、低功耗(核电压1.8V,I/O电压3.3V);128kXl6位片上FLASH,18kXl6位片上SRAM,4kXl6位片上ROM;用于电机控制的外设,2个事件管理器;多种标准串口外设,1个SPI同步串口、2个UART异步串口、1个增强型CAN总线接口、1个McBSP同步串口;16通道的12位A/D转换器;56个独立可编程、复用型、通用I/O口。能够符合本系统设计的要求。

  2 多传感器数据采集与处理

  本系统的智能轮椅有2个独立的驱动轮,各自配备一个电机码盘。由2个电机码盘的实时检测数据构成了里程计式的相对定位传感器,同时安装了倾角传感器和陀螺仪来测量轮椅在行进过程中的姿态状态。超声波传感器和接近开关被用于感知周围环境信息。为获取更大范围内的障碍物信息,本系统配备了8个红外传感器和8个超声波传感器。另外安装了一个CCD摄像头用于判断前方行进路程中的深度信息。

  以下依次介绍上面几种传感器的硬件设计方案。

  2.1 超声传感器与接近开关

  本超声波测距系统共有8个超声波传感器,组成超声波传感器阵列,分别置于轮椅四周各两个。为了检测到一些被超声波传感器遗漏或未能及时处理的障碍,还要在轮椅四周加装四个电感式接近开关。障碍物碰到防撞橡胶圈引起金属条发生变形,产生垂直方向上的位移,触发接近开关动作,得到一个开关信号(中断请求信号),使移动机器人立即停止运行。

  超声波环境探测电路主要由多路模拟开关、升压放大电路、缓冲放大整形电路和超声波换能器等环节构成,如图2所示。



  升压放大电路和超声波发射换能器组成了超声波发射部分。发射过程是:首先由DSP的脉宽调制通道产生一定脉宽的调制脉冲波,经变压器升压放大电路后产生一个瞬间的高能信号,激发超声波发射换能器产生超声波信号。需要注意的是,超声波在发射的瞬间,有部分声波会直接进入超声波接收端,从而产生很强的虚假反射波,造成所谓的振铃现象。为了避免振铃,需要进行软件延时处理,从而导致探测盲区。在程序处理上,就是在DSP发射激励脉冲波以后一段时间内将相应的CAP中断关闭,盲区间隔过了以后再将CAP中断打开。超声波的接收部分必须与发射部分协调一致地工作,才能保证信号准确灵敏地接收。此部分主要由超声波接收换能器、放大滤波、整形触发输出电路组成。由于在超声波传播中,其能量会随着传播距离的增大而减小,从远距离障碍物反射回的回波信号一般比较弱,所以需要经过多级信号放大处理后才能够被DSP中断输入端口检测到。

  2.2 编码器

  在智能轮椅系统中,除了要对环境的距离信息进行测量,有时还要对方位信息进行有效的观测或者估计。对于大多数的室内移动机器人系统而言,方位信息一般是通过码盘信息间接估计得出的,本系统也采用这种方法。通过计算从码盘读出的信息得出结果,代价是需要一定的计算时间。

  在TMS324LF2407A芯片上有两个时间管理模块(EV),每个EV模块都有一个正交编码脉冲电路,使用该电路后,在两个相应引脚上即可输入正交编码脉冲。该电路可用于连接光电码盘以获得旋转机械的位置和速率等信息,但需要注意的是,此时必须禁止相应引脚上的捕获功能。

  正交编码脉冲电路的时序可由通用定时器2(或通用定时器4,EVB模块)提供,通用定时器必须设置成定向增/减模式,并且以正交编码脉冲电路作为时钟源。

  正交编码脉冲是两个频率变化且正交(相位相差90°)的脉冲,它由电机轴上的光电编码器产生,码盘在电机轴上并且有许多空线槽,可以透光,当电机带动码盘转动时,如果发光二极管发出的光被挡住,那么后面的光电传感器就接收不到信号,然后光电传感器发出一个低电平脉冲,即“0”,如果旋转位置正好使得光源可以透光线槽,那么光电传感器感应到信号,就发出一个高电平脉冲,即“1”。

  正交编码脉冲电路的方向检测逻辑决定了两个脉冲序列中哪一个是先导序列,接着它就产生方向信号作为通用定时器的计数方向输入,两列正交输入脉冲的两个边沿都被正交脉冲编码电路计数,因此,产生的时钟频率是每个输入序列的4倍,且把这个时钟作为通用定时器2或4的输入时钟。图3给出了正交编码脉冲、增减计数方向及时钟的波形。



  2.3 姿态传感器

  本系统区别于其他轮椅设计的一个最显著的特点,就是本设计能够仅仅依靠两个轮子完成车体的平衡。这个显著特征要求它有特殊的结构,基本的设计思想为:保持两个轮子分别由独立的直流电动机驱动,并且在一条轴线上,车体的重心保持在轮轴以上,使用检测车体倾斜角度的传感器实时地获取车体的姿态信息,机器人的处理器将传感器信号进行处理,按照一定的控制算法计算出控制量控制电动机的转速和转向,驱动机器人前进或后退,完成车体的平衡。

  本智能轮椅采用一个倾角传感器和一个陀螺仪的组合构成姿态传感器来检测车体平台的运行姿态。倾角传感器用来测量轮椅偏离竖直方向的角度,陀螺仪用来测量角速度。

  以TMS320LF2407A为控制核心的运动控制器,根据编码器和姿态传感器检测到的平台运行的位移和姿态信号,通过一定的控制策略计算出控制量,再经脉宽调制控制及驱动器放大后驱动直流电动机运转,随时调整车体平台的运行速度,从而使车体平台始终保持平衡状态。控制电路原理图如图4所示。控制板采集来自倾角和角速度传感器的信号并对信号进行调理(滤波、整形、偏移),然后将信号传送到控制板中,经过DSP的运算处理(控制算法由电动车系统的数学模型推导而出),通过DSP的两路脉宽调制将控制信号发出,再经过电机驱动模块驱动电机运转,控制轮椅保持平衡状态。



  2.4 摄像头

  用于感知环境的深度信息,如判断前方是否有楼梯以及提取楼梯的高度信息,提取路途标志物用以导航等等。摄像头可直接通过USB与PC机通讯,在这里不再另外叙述。

  3 结束语

  本文设计了用于智能轮椅的多传感器环境感知系统,对各数据采集子系统做了详细的介绍,采用简单可靠的硬件电路感知环境信息。经实验证明,此系统方案具有硬件电路结构简单、工作可靠、精度高、重复性好等特点,而且采取了模块化设计,可以更方便地添加新研制的功能模块和进行技术更新,便于消费者根据自身生活需要,选择和组合各模块,使各功能模块得到充分的应用,从而能够满足不同消费阶层的需要。


562

主题

1222

帖子

8133

积分

版主

Rank: 7Rank: 7Rank: 7

积分
8133
沙发
发表于 2017-6-22 18:24:52 | 只看该作者
图片是不是少了了~~
1、机智云QQ群: 287087942
机智云爱好者-APP开发群: 599735135
QQ群目前非常活跃,欢迎大家参与进来,交流,讨论,答疑,解惑~~
2、机智云微信公众号: 机智云 gizwits /   机智云智能宠物屋go-kit
关注机智云Gizwits官方公众号随时掌握最新资讯和活动信息
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

加入Q群 返回顶部

版权与免责声明 © 2006-2024 Gizwits IoT Technology Co., Ltd. ( 粤ICP备11090211号 )

快速回复 返回顶部 返回列表