SoftServe 是全球领先的技术解决方案提供商,根据其发布的研究报告显示, 62% 的大中型公司希望在未来的两年内能将机器学习用于商业分析。大数据分析技术尽管相对较新,仍然有 86% 的公司运用了大数据系统。此外,大中型公司认为大数据分析是必须的,并且接受基于大数据分析的新技术。
调查对象被问到,与传统系统相比,他们看到的大数据中的最大机遇是什么?62% 的人同意实时分析隐藏着当下最大的机遇。
Facebook 宣布了 15 亿个人工智能代理计划后,过去的一年中人工智能一直占据着人们的想象力。一家荷兰财团用机器学习技术绘制了一张「新伦勃朗」画像。但是另一个让人惊叹的或许是企业已经在认真地看待大数据的机器学习。这个发展意味着,企业如何理解利用和建立新的大数据技术产生有价值的商业见解的优势。
「不久前,我们还走访了多家企业并解释了为什么他们应该了解大数据。2016年的今天,在 63%的组织看来,大数据分析对保持竞争力已经是必须的,」 SoftServe 的技术服务副总 Serge Haziyev解释。「本次调查显示,机器学习的重要性非常突出,这是非常令人鼓舞的。我发现,采取行动并使用机器学习技术的企业较早地获得了好处 — 这是前进的一大步,因为它提供了规范的见解,使企业不仅了解客户正在做什么,还了解他们为什么这么做。」
研究显示金融服务组织比其他行业更加重视大数据分析,他们是新技术的早期使用者。在这些组织中,67% 认为大数据分析是保持竞争的必需品,68% 期望在未来的两年内在大数据分析中用上机器学习。制造业紧随其后,在他们中,有 60% 的组织认可大数据分析是必备品,62% 的组织计划使用机器学习。
这个调查也考虑了挑战以及增长上的困难。零售业最关注的是数据管理。所有受访者一致认为,相比于传统系统,大数据分析中的数据管理更值得关注。整体上有 76% 的公司同意这一点,表明它仍然是所用行业共同关心的问题。
SoftServe 大数据调查共调查了300名大中型组织决策者,其中100名来自英国,另外200名来自美国。有150名决策者所在的公司员工在1000 - 3000 人之间,剩下的150名决策者的公司员工超过了3000人。受访者被细分为六个重点行业:商业和专业服务,制造业,金融服务业,零售业,物流和运输业,以及其他商业领域。
|